Abstract
The use of adaptive routing in a multicomputer interconnection network improves network performance by using all available paths and provides fault tolerance by allowing messages to be routed around failed channels and nodes. Two deadlock-free adaptive routing algorithms are described. Both algorithms allocate virtual channels using a count of the number of dimension reversals a packet has performed to eliminate cycles in resource dependency graphs. The static algorithm eliminates cycles in the network channel dependency graph. The dynamic algorithm improves virtual channel utilization by permitting dependency cycles and instead eliminating cycles in the packet wait-for graph. It is proved that these algorithms are deadlock-free. Experimental measurements of their performance are presented.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Parallel and Distributed Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.