Abstract
Deadlock detection in concurrent programs that create networks with arbitrary numbers of nodes is extremely complex and solutions either give imprecise answers or do not scale. To enable the analysis of such programs, (1) we define an algorithm for detecting deadlocks of a basic model featuring recursion and fresh name generation: the lam programs, and (2) we design a type system for value-passing CCS that returns lam programs. We show the soundness of the type system, and develop a type inference algorithm for it. The resulting algorithm is able to check deadlock-freedom of programs that cannot be handled by previous analyses, such as those that build unbounded networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.