Abstract

In areas such as computer software and hardware, manufacturing systems, and transportation, engineers encounter networks with arbitrarily large numbers of isomorphic subprocesses. Parameterized systems provide a framework for modeling such networks. The analysis of parameterized systems is a challenge as some key properties such as nonblocking and deadlock-freedom are undecidable even for the case of a parameterized system with ring topology. In this paper, we introduce \textit{Parameterized-Chain Networks} (PCN) for modeling of networks containing several linear parameterized segments. Since deadlock analysis is undecidable, to achieve a tractable subproblem we limit the behavior of subprocesses of the network using our previously developed mathematical notion `weak invariant simulation.' We develop a dependency graph for analysis of PCN and show that partial and total deadlocks of the proposed PCN are characterized by full, consistent subgraphs of the dependency graph. We investigate deadlock in a traffic network as an illustrative example. This document contains all the details and proofs of the study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.