Abstract

Many time-sensitive applications impose high requirement on real-time response. There exist many algorithms and routing protocols for efficient data packet delivery. However, previous works set the same retransmission threshold for all the relay nodes along a delivery path. The method decreases the probability of a packet being transmitted through the delivery path within given deadline. In this paper, we focus on finding the optimal retransmission thresholds for the relay nodes, such that the summation of the probability of a packet being transmitted to the next relay node or destination node within the specified deadline is maximized. A distributed greedy algorithm that can be run on sensor node is proposed, which enables the sensor node to adaptively set the optimal retransmission threshold. To avoid dropping the packet forwarded to the destination within given deadline with high probability, we develop a packet dropped protocol based on probabilistic delay bound. Experimental results show that the proposed protocols have better performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.