Abstract

Nowadays, Internet of things has become as an inevitable aspect of humans’ IT-based life. A huge number of geo-distributed IoT enabled devices such as smart phones, smart cameras, health care systems, vehicles, etc. are connected to the Internet and manage users’ applications. The IoT applications are generally time sensitive, so that giving them up to Cloud and receiving the response may violate their required deadline, due to distance between user device and centralized Cloud data center and consequently increasing network latency. Fog environment, as an intermediate layer between Cloud and IoT devices, brings a smaller scales of Cloud capabilities closer to user location. Processing real time applications in Fog layer helps more deadlines to be met. Although Fog computing enhances quality of service parameters, limited resources and power of Fog nodes is a challenge in processing applications. Furthermore, the network latency is still an issue for communications between applications’ services and between user device and Fog node, which seriously threatens deadline condition. Regarding to mentioned points, this paper proposes a 3-partite deadline-aware applications’ services placement optimization model in Fog environment which optimizes total power consumption, total resources wastage, and total network latency, simultaneously. The proposed model prioritizes applications in 3 levels based on their associated deadline, and then the model is solved using a parallel model of first fit decreasing and genetic algorithm combination. Simulations results indicates the superiority of proposed approach against counterpart algorithms in terms of reducing power consumption, resource wastage, network latency, and service rejection rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.