Abstract
We present OptEx, a closed-form model of job execution on Apache Spark, a popular parallel processing engine. To the best of our knowledge, OptEx is the first work that analytically models job completion time on Spark. The model can be used to estimate the completion time of a given Spark job on a cloud, with respect to the size of the input dataset, the number of iterations, and the number of nodes comprising the underlying cluster. Experimental results demonstrate that OptEx yields a mean relative error of 6 percent in estimating the job completion time. Furthermore, the model can be applied for estimating the cost-optimal cluster composition for running a given Spark job on a cloud under a completion deadline specified in the SLO (i.e., Service Level Objective). We show experimentally that OptEx is able to correctly estimate the required cluster composition for running a given Spark job under a given SLO deadline with an accuracy of 98 percent. We also provide a tool which can classify Spark jobs into job categories based on bisimilarity analysis on lineage graphs collected from the given jobs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.