Abstract

The model genome of Arabidopsis thaliana contains a DEAD-box RNA helicase family (RH) of 58 members, i.e. almost twice as many as in the animal or yeast genomes. Transcript profiling using real-time quantitative polymerase chain reaction (PCR) has been obtained for 20 AtRHs from nine different organs. Two AtRHs exhibited plant-specific profiles associated with photosynthetic and sink organs. The other 18 AtRHs had the same transcript profile, and the levels of transcription of these 'housekeeping'AtRHs were under strict quantitative control over a large range of values. Transcript levels may be very different between the most recently duplicated genes. The master regulatory element in the definition of the transcript level is the simultaneous presence of a TATA-box and an intron in the 5' untranslated region (UTR). There is a positive and highly significant correlation between the size of the 5' UTR intron and the transcription level, as long as a characteristic TATA-box is present. Our work on the housekeeping AtRHs suggests a scenario for the evolution of duplicated genes, leading to both highly and poorly transcribed genes in the same terminal branch of the phylogenetic tree. The general evolutionary drive of the AtRH family, after duplication of a highly transcribed ancestral AtRH, was towards an alteration of the transcriptional activity of the divergent duplicates through successive events of suppression of the TATA-box and/or the 5' UTR intron.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.