Abstract
This paper proposes an alternative strategy of finite-control-set model-predictive torque control (MPTC) to reduce the computational burden and the torque ripple and decouple the switching frequency from the controller sampling time. An improved discrete space-vector modulation (DSVM) technique is utilized to synthesize a large number of virtual voltage vectors. The deadbeat (DB) technique is used to optimize the voltage vector selection process, avoiding enumerating all the feasible voltage vectors. With this proposed method, only three voltage vectors are tested in each predictive step. Based on the improved DSVM method, the three candidate voltage vectors are calculated by using a novel algebraic way. This new strategy has the benefits of both the MPTC method and the DB method. The effectiveness of the proposed strategy is validated based on a test bench.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.