Abstract
This paper introduces a novel deadbeat frequency estimator for possibly biased noisy sinusoidal signals. The proposed estimation scheme is based on processing the measurements by Volterra integral operators with suitably designed kernels, that allow to obtain auxiliary signals not affected by the unknown initial conditions. These auxiliary signals are exploited to adapt the frequency estimate with a variable structure adaptation law that yields finite-time convergence of the estimation error. The worst case behavior of the proposed algorithm in the presence of bounded additive disturbances is characterized by Input-to-State Stability arguments. Numerical simulations are given to show the effectiveness of the proposed method and to compare it with some other techniques available in the recent literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.