Abstract

The dead time of the detector significantly distorts the fluorescence correlation function of fluorescent particles in solution. This distortion of the correlation function is similar to the saturation effect of the correlation function in a high-power excitation region. The correlation amplitude is significantly reduced by the dead time. The deviations in the number of molecules and the diffusion time are empirically given by the deviation of the fluorescence intensity linearity. The empirical curves of the deviations can be applied to the systematic error estimation of the parameters. The proportionality of the number of molecules to the concentration of fluorophores is no longer maintained with a large dead time, although almost all of the proportionality of the diffusion time to the inverse diffusion constant remains. This fact makes the dead-time effect different from the saturation effect, which is due to photokinetics. In practice, these distortions can be reduced by use of a smaller excitation power in which the proportionality of the fluorescence intensity is maintained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.