Abstract
AbstractA new adaptive‐linear‐neuron‐ (ADALINE‐) based dead‐time compensation method is presented for permanent magnet synchronous motor (PMSM) drives. It is proposed to suppress the sixth current harmonics adaptively in the synchronous reference frame due to dead‐time effects. In order to extract the sixth current harmonics, two ADALINE‐based extractors are used without taking into account the electrical lead angle. An improved ADALINE algorithm is used to calculate compensation voltages, taking into account the phase shift of impedance. The proposed method is capable of operating not only at low speed but also at medium and rated speeds in contrast to the traditional compensation method of ADALINE only at low speed. The new method is effective in steady, load dynamic and speed dynamic states with no needs for any extra hardware to detect phase current polarity. The effectiveness of the proposed compensation method is verified on a 780 W PMSM drive through experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.