Abstract
Infections can result in a temporarily restricted unresponsiveness of the innate immune response, thereby limiting pathogen control. Mechanisms of such unresponsiveness are well studied in lipopolysaccharide tolerance; however, whether mechanisms of tolerance limit innate immunity during virus infection remains unknown. Here, we find that infection with the highly cytopathic vesicular stomatitis virus (VSV) leads to innate anergy for several days. Innate anergy is associated with induction of apoptotic cells, which activates the Tyro3, Axl, and Mertk (TAM) receptor Mertk and induces high levels of interleukin-10 (IL-10) and transforming growth factorβ (TGF-β). Lack of Mertk in Mertk-/- mice prevents induction of IL-10 and TGF-β, resulting in abrogation of innate anergy. Innate anergy is associated with enhanced VSV replication and poor survival after infection. Mechanistically, Mertk signaling upregulates suppressor of cytokine signaling 1 (SOCS1) and SOCS3. Dexamethasone treatment upregulates Mertk and enhances innate anergy in a Mertk-dependent manner. In conclusion, we identify Mertk as one major regulator of innate tolerance during infection with VSV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.