Abstract

DEAD box proteins perform diverse cellular functions in bacteria. Our group previously reported that the transposon Tn4531 insertion in Riean_0395 (designated dhR1), which encodes a putative DEAD box helicase, attenuated the virulence of R. anatipestifer strain YZb1. Here, we show that, compared to the wild-type (WT) R. anatipestifer strain Yb2, the growth or survival of the ΔdhR1 mutant in tryptic soy broth (TSB) was significantly decreased in response to cold, pH, osmotic stress, ethanol, Triton X-100, and oxidative stress, and the dhR1 deletion significantly reduced biofilm formation and the adhesion capacity to Vero cells, whereas the growth of ΔdhR1 was less impaired in iron-limited TSB. Moreover, the virulence of ΔdhR1 in ducklings was attenuated by about 80-fold, compared to the WT. In addition, a transcriptome analysis showed that the dhR1 deletion in the strain Yb2 affected the expression of 58 upregulated genes and 98 downregulated genes that are responsible for various functions. Overall, our work reveals that the deletion of DhR1 results in a broad effect on the bacterial fitness, biofilm formation, iron utilization, and virulence of R. anatipestifer, which makes it a global regulator. IMPORTANCE R. anatipestifer infection has been a continued and serious problem in many duck farms, but little is known about the mechanism underlying the pathogenesis of R. anatipestifer and how R. anatipestifer adapts to the external environment and thereby persists in duck farms. The results of this study demonstrate that the DEAD box protein DhR1 is required for the tolerance of R. anatipestifer to cold, pH, and other stresses, and it is also necessary for biofilm formation, iron utilization, and virulence in ducklings, demonstrating multiple functions of DhR1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call