Abstract

Here we report the synthesis and characterisation of high surface area MgO prepared via the thermal decomposition of various magnesium precursors (MgCO3, Mg(OH)2 and MgC2O4). Bimetallic gold-palladium nanoalloy particles were supported on these MgO materials and were tested as catalysts for the solvent-free selective aerobic oxidation of benzyl alcohol to benzaldehyde. All these catalysts were found to be active and very selective (>97%) to the desired product (benzaldehyde). However, MgO prepared via the thermal decomposition of magnesium oxalate displayed the highest activity among all the magnesium oxide supports tested. Attempts were made to unravel the reasons for the deactivation of these catalysts using different characterisation techniques namely in situ XRD, XPS, ICP-MS, TEM, and TGA-MS. From the data obtained, it is clear that MgO undergoes phase changes from MgO to Mg(OH)2 and MgCO3 during catalyst preparation as well as during the catalytic reaction. Besides phase changes, strong adsorption of reactants and products on the catalyst surface, during the reaction, were also observed and washing the catalyst with organic solvents did not completely remove them. The phase change and catalyst poisoning were reversed through high temperature heat treatments. However, these processes led to the sintering of the metal nanoparticles. Moreover, substantial leaching of the support material (MgO) was also observed during the reaction. These latter two processes led to the irreversible deactivation of AuPd nanoparticles supported on MgO catalyst during the solvent-free selective aerobic oxidation of alcohols. Among the three different MgO supports studied in this article, an inverse correlation between the catalytic activity and Mg leaching has been observed. This article reports a deeper understanding of the mode of deactivation observed in metal nanoparticles supported on MgO during liquid phase reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.