7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1039/b704625a
Copy DOIJournal: Dalton Transactions | Publication Date: Jan 1, 2007 |
Citations: 9 |
The stoichiometric reaction between the previously described lithium amide salts, LiN(SiMe2R)2 [Li{i}, R = furyl, Li{ii}, R = 2-methylfuryl] and titanium(iv)chloride at low temperature afforded the mono-amide compounds Ti{i}Cl3 (1a) and Ti{ii}Cl3 (1b). The analogous zirconium derivatives Zr{i}Cl3 (3a) and Zr{ii}Cl3 (3b) were accessed via the reaction of excess trimethylsilylchloride with the mixed tetra-amide species, Zr{i}(NMe2)3 (2a) and Zr{ii}(NMe2)3 (2b). The bis-amide complexes Ti{ii}2Cl2 (4b), Zr{i}2Cl2 (5a) and Zr{ii}2Cl2 (5b) were synthesized in a straightforward salt metathesis reaction employing two equivalents of Li{i} or Li{ii} with the metal salts, MCl4(THF)2. The reactivity of the halide compounds 1 and 3-5 with a variety of alkylating agents was studied, with ligand transfer from the transition-element to the main group metal-alkyl reagent being the predominant reaction pathway. The reaction of 4b with MeLi was, however, partially successful affording the titanium(III) complex, Ti{ii}2X (X = Cl/Me, 6b'); this compound was subsequently made as the pure chloride from the reaction of two equivalents of Li{iii} with TiCl3(THF)3. The targeted dialkyl species, Ti{ii}Me2 (7b), was successfully isolated from the reaction between the dichloride 4b and dimethylmagnesium. The molecular structures of 1a, 1b, [3a]2 [3b]2, 4b, 5b and 6b have been solved using single-crystal X-ray diffraction techniques, indicating varying nuclearity of the complexes and hapticities for the amide ligands in the solid-state. The catalytic activity of selected complexes in the polymerization of ethylene is reported.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.