Abstract
Emissions of nitrogen oxides (NOX) from internal combustion engines are a major contributor to global air pollution, and with more stringent environmental legislations, the need for more efficient and durable NOX emission control systems increases. In the present paper, experimental results of hydrothermal deactivation and regeneration using hydrogen, and chemical deactivation due to phosphorous and potassium exposure of Fe-BEA as NH3-SCR catalyst are summarized. Based on the experimental results, a multi-site kinetic model is developed to predict deactivation of Fe-BEA. The kinetic model predicts deactivation well by decreasing the number of active sites in the model representing loss of active iron sites due to migration or chemical blockage of the sites. It is discussed that by performing a systematic study of different deactivation mechanisms, a deactivation expression for the active sites could be formulated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.