Abstract
Potassium-promoted cobalt molybdenum sulfide (K-CoMoSx) mixed alcohol synthesis catalysts were operated from 118 to 3969h for the purpose of studying catalyst deactivation. Continuous and discontinuous sulfiding with H2S and methyl sulfides was considered. Fresh and discharged catalysts were analyzed via X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). When continuously sulfided, selectivity was maintained for thousands of hours. Without sulfur cofeed, catalysts exhibited a change in selectivity from alcohols to hydrocarbons over periods of hundreds of hours. Sulfur deprivation resulted in oxidization, carburization, and coking of the catalyst surface and segregation of cobalt into crystalline Co9S8. It is suggested that in the absence of a sulfiding agent, the catalyst surface becomes more acidic (oxidized) promoting dehydration of alcohols (selectivity change) and coking (blocking active sites). Reintroduction of H2S may reverse oxidation on non-coked surfaces. Proper sulfur maintenance may render catalysts operable for years without need of regeneration or replacement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.