Abstract

The poor stability of carbon materials doped with nitrogen limited their development in acetylene hydrochlorination. Therefore, investigating the deactivation reasons of carbon catalysts and researching regeneration methods became the research focus. Herein, carbon-nitrogen materials were synthesized by one-step pyrolysis, which using biomass materials with high nitrogen content, the synthesized material was used in an acetylene hydrochlorination reaction. The acetylene conversion rate of D-GH-800 catalyst was up to 99%, but the catalytic activity decreased by 30% after 60 h reaction. Thermogravimetric analysis results showed that the coke content was 5.87%, resulting in catalyst deactivation. Temperature-programmed desorption verified that the deactivation was due to the strong adsorption and difficult desorption of acetylene by the D-GH-800 catalyst, resulting in the accumulation of acetylene on the catalyst surface to form carbon polymers and leading to the pore blockage phenomenon. Furthermore, based on the catalyst deactivation by carbon accumulation, we proposed a new idea of regeneration by ZnCl2 activation to eliminate carbon deposition in the pores of the deactivated catalyst. As a result, the activity of D-GH-800 was recovered, and lifetime was also extended. Our strategy illustrated the mechanism of carbon deposition, and the recoverability of the catalyst has promising applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.