Abstract
Data Envelopment Analysis (DEA) models with undesirable inputs and outputs have been frequently discussed in DEA literature, e.g., via data transformation. These studies were scatted in the literature, and often confined to some particular applications. In this paper we present a systematic investigation on model building of DEA without transferring undesirable data. We first describe the disposability assumptions and a number of different performance measures in the presence of undesirable inputs and outputs, and then discuss different combinations of the disposability assumptions and the metrics. This approach leads to a unified presentation of several classes of DEA models with undesirable inputs and/or outputs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.