Abstract

The thermal time hypothesis proposed by Rovelli [1] regards the physical basis for the flow of time as thermodynamical and provides a definition of the temperature for some special cases. We verify this hypothesis in the case of de Sitter spacetime by relating the uniformly accelerated observer in de Sitter spacetime to the diamond in Minkowski spacetime. Then, as an application of it, we investigate the thermal effect for the uniformly accelerated observer with a finite lifetime in dS spacetime, which generalizes the corresponding result for the case of Minkowski spacetime [2]. Furthermore, noticing that a uniformly accelerated dS observer with a finite lifetime corresponds to a Rindler observer with a finite lifetime in the embedding Minkowski spacetime, we show that the global-embedding-Minkowski-spacetime (GEMS) picture of spacetime thermodynamics is valid in this case. This is a rather nontrivial and unexpected generalization of the GEMS picture, as well as a further verification of both the thermal time hypothesis and the GEMS picture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.