Abstract

We argue that the notion of entanglement in de Sitter space arises naturally from the non-trivial Lorentzian geometry of the spacetime manifold, which consists of two disconnected boundaries and a causally disconnected interior. In four bulk dimensions, we propose an holographic description of an inertial observer in terms of a thermofield double state in the tensor product of the two boundaries Hilbert spaces, whereby the Gibbons–Hawking formula arises as the holographic entanglement entropy between the past and future conformal infinities. When considering the bulk entanglement between the two causally disconnected Rindler wedges, we show that the corresponding entanglement entropy is given by one quarter of the area of the pair of codimension two minimal surfaces that define the set of fixed points of the dS orbifold.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.