Abstract

In this paper, the De Saint-Venant flexure-torsion problem is developed via a technique by means of a novel complex potential function analytic in all the domain whose real and imaginary parts are related to the shear stresses. The latter feature makes the complex analysis enforceable for the shear problem. Taking full advantage of the double-ended Laurent series involving harmonic polynomials, a novel element-free weak form procedure, labelled Line Element-less Method (LEM), is introduced, imposing that the square of the net flux across the border is minimized with respect to expansion coefficients. Numerical implementation of the LEM results in systems of linear algebraic equations involving positive-definite and symmetric matrices solving only contour integrals. Some numerical applications are reported to assess not only the efficiency and accuracy of the method to handle shear stress problems but also the robustness in the sense that exact solutions when available are captured straight away.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.