Abstract

The subsurface is pivotal in the energy transition, for the sequestration of CO2 and energy storage. It is crucial to understand to what extent geological faults may form leakage pathways that threaten the containment integrity of these projects. Fault flow behavior has been studied in the context of hydrocarbon development, supported by observations from wells drilled through faults, but such observations are rare in geoenergy projects. Focusing on mechanical behavior as early indicator of potential leakage risks, a probabilistic Coulomb Failure Stress workflow is developed and demonstrated using data from the Decatur CO2 sequestration project to rank faults based on their containment risk. The analysis emphasizes the importance of fault throw relative to reservoir thickness and pore pressure change in assessing reactivation risks. Integrating this mechanical assessment with geological and dynamic fault analyses contributes to derisking fault containment for geoenergy applications, providing valuable insights for the successful development of subsurface storage projects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.