Abstract

BackgroundSchistosoma turkestanicum is a parasite of considerable veterinary importance as an agent of animal schistosomiasis in many countries, including China. The S. turkestanicum cercariae can also infect humans, causing cercarial dermatitis in many countries and regions of the world. In spite of its significance as a pathogen of animals and humans, there is little transcriptomic and genomic data in the public databases.MethodsHerein, we performed the transcriptome Illumina RNA sequencing (RNA-seq) of adult males and females of S. turkestanicum and de novo transcriptome assembly.ResultsApproximately 81.1 (female) and 80.5 (male) million high-quality clean reads were obtained and then 29,526 (female) and 41,346 (male) unigenes were assembled. A total of 34,624 unigenes were produced from S. turkestanicum females and males, with an average length of 878 nucleotides (nt) and N50 of 1480 nt. Of these unigenes, 25,158 (72.7 %) were annotated by blast searches against the NCBI non-redundant protein database. Among these, 21,995 (63.5 %), 22,189 (64.1 %) and 13,754 (39.7 %) of the unigenes had significant similarity in the NCBI non-redundant protein (NR), non-redundant nucleotide (NT) and Swiss-Prot databases, respectively. In addition, 3150 unigenes were identified to be expressed specifically in females and 1014 unigenes were identified to be expressed specifically in males. Interestingly, several pathways associated with gonadal development and sex maintenance were found, including the Wnt signaling pathway (103; 2 %) and progesterone-mediated oocyte maturation (77; 1.5 %).ConclusionsThe present study characterized and compared the transcriptomes of adult female and male blood fluke, S. turkestanicum. These results will not only serve as valuable resources for future functional genomics studies to understand the molecular aspects of S. turkestanicum, but also will provide essential information for ongoing whole genome sequencing efforts on this pathogenic blood fluke.

Highlights

  • Schistosoma turkestanicum is a parasite of considerable veterinary importance as an agent of animal schistosomiasis in many countries, including China

  • Five blood flukes were washed in physiological saline six times to remove any contamination with bacterial and host DNA, identified morphologically as S. turkestanicum according to existing keys and descriptions [23], and their identity was further ascertained by direct amplification and sequencing of the internal transcribed spacer (ITS) region, as previously described [24]

  • Several pathways associated with gonadal development and sex maintenance were found, such as the Wnt signaling pathway (103; 2 %), progesteronemediated oocyte maturation (77; 1.5 %), GnRH signaling pathway (62; 1.2 %), TGF-beta signaling pathway (55; 1.1 %) and steroid hormone biosynthesis (12; 0.2 %) (Table 2 and Fig. 5)

Read more

Summary

Introduction

Schistosoma turkestanicum is a parasite of considerable veterinary importance as an agent of animal schistosomiasis in many countries, including China. The S. turkestanicum cercariae can infect humans, causing cercarial dermatitis in many countries and regions of the world. In spite of its significance as a pathogen of animals and humans, there is little transcriptomic and genomic data in the public databases. Orientobilharzia turkestanicum) is a parasite of major veterinary importance as an agent of animal schistosomiasis, which infects a range of animals including cattle, sheep, goats, water buffaloes, horses, donkeys, mules, camels, and causes considerable economic losses [6]. Liu et al Parasites & Vectors (2016) 9:143 pathogen of cercarial dermatitis in many countries and regions of the world, including China [6, 7]. The aim of the present study was to produce transcriptomic data to aid the better understanding of the biology of S. turkestanicum, which would facilitate the identification of intervention targets for S. turkestanicum and other medically and veterinary important trematodes

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.