Abstract

BackgroundSalinity, alkalinity, and drought stress are the main abiotic stress factors affecting plant growth and development. Sophora alopecuroides L., a perennial leguminous herb in the genus Sophora, is a highly salt-tolerant sand-fixing pioneer species distributed mostly in Western Asia and northwestern China. Few studies have assessed responses to abiotic stress in S. alopecuroides. The transcriptome of the genes that confer stress-tolerance in this species has not previously been sequenced. Our objective was to sequence and analyze this transcriptome.ResultsTwelve cDNA libraries were constructed in triplicate from mRNA obtained from Sophora alopecuroides for the control and salt, alkali, and drought treatments. Using de novo assembly, 902,812 assembled unigenes were generated, with an average length of 294 bp. Based on similarity searches, 545,615 (60.43%) had at least one significant match in the Nr, Nt, Pfam, KOG/COG, Swiss-Prot, and GO databases. In addition, 1673 differentially expressed genes (DEGs) were obtained from the salt treatment, 8142 from the alkali treatment, and 17,479 from the drought treatment. A total of 11,936 transcription factor genes from 82 transcription factor families were functionally annotated under salt, alkali, and drought stress, these include MYB, bZIP, NAC and WRKY family members. DEGs were involved in the hormone signal transduction pathway, biosynthesis of secondary metabolites and antioxidant enzymes; this suggests that these pathways or processes may be involved in tolerance towards salt, alkali, and drought stress in S. alopecuroides.ConclusionOur study first reported transcriptome reference sequence data in Sophora alopecuroides, a non-model plant without a reference genome. We determined digital expression profile and discovered a broad survey of unigenes associated with salt, alkali, and drought stress which provide genomic resources available for Sophora alopecuroides.

Highlights

  • Salinity, alkalinity, and drought stress are the main abiotic stress factors affecting plant growth and development

  • Sophora alopecuroides is a type of perennial herb and drought tolerant plant, with its drought tolerance closely related to its root system

  • Using the method of saline, alkaline and drought treatments used on Arabidopsis and soybean, it was found that when concentrations of NaCl, NaHCO3 and PEG were more than 1.2, 1.2 and 8% respectively, the growth of Sophora alopecuroides was inhibited or the plant wilted (Fig. S1)

Read more

Summary

Introduction

Alkalinity, and drought stress are the main abiotic stress factors affecting plant growth and development. Salt-alkali land is widely distributed around the world, covering about 100 million hectares [2]. According to the Food and Agriculture Organization of the United Nations, more than 400 million hectares of land on the major continents are affected by salt [3]. Drought, which can cause salinity to increase, has a great impact on crop yield [7, 8]. With the changes in global climate, the frequency and duration of drought events is increasing, with serious impacts on crop yields [9, 10]. To solve the growing global food shortage, it is essential to use saline-alkali land for agriculture. Using effective gene resources to cultivate salt-, alkali-, and drought-resistant crops is the most economical and productive measure to solve this problem

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.