Abstract

Venturia inaequalis is the causal agent of apple scab, one of the most devastating diseases of apple. Due to several distinct features, it has emerged as a model fungal pathogen to study various aspects of hemibiotrophic plant pathogen interactions. The present study reports de novo assembling, annotation and characterization of the transcriptome of V. inaequalis. Venturia transcripts expressed during its growth on laboratory medium and that expressed during its biotrophic stage of infection on apple were sequenced using Illumina RNAseq technology. A total of 94,350,055 reads (50 bp read length) specific to Venturia were obtained after filtering. The reads were assembled into 62,061 contigs representing 24,571 unique genes. GO analysis suggested prevalence of genes associated with biological process categories like metabolism, transport and response to stimulus. Genes associated with molecular function like binding, catalytic activities and transferase activities were found in majority. EC and KEGG pathway analyses suggested prevalence of genes encoding kinases, proteases, glycoside hydrolases, cutinases, cytochrome P450 and transcription factors. The study has identified several putative pathogenicity determinants and candidate effectors in V. inaequalis. A large number of transcripts encoding membrane transporters were identified and comparative analysis revealed that the number of transporters encoded by Venturia is significantly more as compared to that encoded by several other important plant fungal pathogens. Phylogenomics analysis indicated that V. inaequalis is closely related to Pyrenophora tritici-repentis (the causal organism of tan spot of wheat). In conclusion, the findings from this study provide a better understanding of the biology of the apple scab pathogen and have identified candidate genes/functions required for its pathogenesis. This work lays the foundation for facilitating further research towards understanding this host-pathogen interaction.

Highlights

  • Venturia inaequalis (Cke.) is a phytopathogenic fungus that causes Apple scab, the black spot disease of apple [1], [2], [3]

  • Isolation, culturing and bioassay of Venturia inaequalis Indian isolate of V. inaequalis was isolated from the diseased apple fruit sample collected in a sealed polyethylene biohazard bag, from Kullu district of Himachal Pradesh, India (No permission was required to collect the diseased apple fruit sample to carry out this research work)

  • We have applied Illumina Generation Sequencing platform to unravel the transcriptome of an Indian isolate of V. inaequalis

Read more

Summary

Introduction

Venturia inaequalis (Cke.) is a phytopathogenic fungus that causes Apple scab, the black spot disease of apple [1], [2], [3] It causes deformation in shape and size of the affected fruits, premature leaf/fruit fall and enhances susceptibility of apple tree to chilling and freezing injuries. Overall, it renders apple unsuitable for trade and causes up to 70% of yield reductions. V. inaequalis has broad geographical distribution and an interesting growth pattern. It is mostly restricted in sub-cuticular space of the apple tissues, does not form haustoria, and no apparent mechanical pressure is observed during its penetration into host cuticle [1]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call