Abstract

Philomycus bilineatus is a highly common gastropod mollusk pest in China and is also utilized to treat infectious diseases. However, no genomic resources are available for this non-model species. In the present study, the transcriptomic analysis of P. bilineatus was completed. After sequencing using the next generation sequencing technology, 9.11Gb of clean reads were obtained, which led to the assembly and annotation of 145,523 transcripts and 125,690 unigenes. Unigenes were functionally classified using Gene Ontology (GO), euKaryotic Ortholog Groups of proteins (KOG), and Kyoto Encyclopedia of Genes and Genomes (KEGG). A total of 27,554 unigenes were assigned into 55 GO terms, 13,989 unigenes were differentiated into 26 KOG categories, and 16,368 unigenes were assigned to 229 KEGG pathways. Furthermore, 16,614 simple sequence repeats (SSRs), 38 olfactory genes, and 40 antimicrobial peptide/protein genes were identified. The transcriptome profile of P. bilineatus will provide a valuable genomic resource for further study, will promote the development of new pest management strategies through interference of chemosensory communication, and will support potential medicinal uses of this species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.