Abstract

Thailand’s aromatic coconut (Cocos nucifera L.) is a special type of green dwarf coconut, the liquid endosperm of which is characterized by a pleasant “pandan-like” aroma due to the presence of 2-acetyl-1-pyrroline (2AP). The aim of this study was to perform a de novo assembly of transriptome from C. nucifera endosperm and to identify the gene responsible for 2AP biosynthesis. CnAMADH2 was identified as an ortholog of the rice aromatic gene and a G-to-C substitution found in exon 14 was associated with 2AP content in the aromatic green dwarf coconut accessions. The base substitution caused an amino-acid change, alanine-to-proline, at position 442 (P442A). The presence of P at this position might alter the steric conformation at the loop region and subsequently result in an unstabilized dimer conformation that could lower AMADH enzyme activity. Among AMADH/BADH protein sequences in different plant species, the P442A mutation was found exclusively in aromatic coconut. The PCR marker developed based on this sequence variation can perfectly detect the aromatic and non-aromatic alleles of the gene. This study confirms the hypothesis that plants may share a mechanism of 2AP biosynthesis. This is the first identification of the gene associated with 2AP biosynthesis in a tree plant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.