Abstract

BackgroundOrthopteran migratory locust, Locusta migratoria, and lepidopteran Asian corn borer, Ostrinia furnacalis, are two types of insects undergoing incomplete and complete metamorphosis, respectively. Identification of candidate genes regulating wing development in these two insects would provide insights into the further study about the molecular mechanisms controlling metamorphosis development. We have sequenced the transcriptome of O. furnacalis larvae previously. Here we sequenced and characterized the transcriptome of L. migratoria wing discs with special emphasis on wing development-related signaling pathways.Methodology/Principal FindingsIllumina Hiseq2000 was used to sequence 8.38 Gb of the transcriptome from dissected nymphal wing discs. De novo assembly generated 91,907 unigenes with mean length of 610 nt. All unigenes were searched against five databases including Nt, Nr, Swiss-Prot, COG, and KEGG for annotations using blastn or blastx algorithm with an cut-off E-value of 10−5. A total of 23,359 (25.4%) unigenes have homologs within at least one database. Based on sequence similarity to homologs known to regulate Drosophila melanogaster wing development, we identified 50 and 46 potential wing development-related unigenes from L. migratoria and O. furnacalis transcriptome, respectively. The identified unigenes encode putative orthologs for nearly all components of the Hedgehog (Hh), Decapentaplegic (Dpp), Notch (N), and Wingless (Wg) signaling pathways, which are essential for growth and pattern formation during wing development. We investigated the expression profiles of the component genes involved in these signaling pathways in forewings and hind wings of L. migratoria and O. furnacalis. The results revealed the tested genes had different expression patterns in two insects.Conclusions/SignificanceThis study provides the comprehensive sequence resource of the wing development-related signaling pathways of L. migratoria. The obtained data gives an insight into better understanding the molecular mechanisms involved in the wing development in L. migratoria and O. furnacalis, two insect species with different metamorphosis types.

Highlights

  • Insects are the only group of invertebrates that have evolved flight [1]

  • The huge difference about the wing development in L. migratoria and O. furnacalis suggests that the molecular mechanisms controlling the wing development in insects with incomplete or complete metamorphosis might be largely different

  • This work will provide useful information for studying the molecular basis involved in the wing development in L. migratoria and O. furnacalis, two insect species with different type of metamorphosis

Read more

Summary

Introduction

Insects are the only group of invertebrates that have evolved flight [1] Their wings serve as organs of flight, and may be adapted variously as protective covers [2], thermal collectors [3], gyroscopic stabilizers [4], sound producers [5], or visual cues for species recognition and sexual contact [6]. For those insects with wings during the adult stage, complete wings are not always visible throughout the life cycle. We sequenced and characterized the transcriptome of L. migratoria wing discs with special emphasis on wing development-related signaling pathways

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.