Abstract

Liriodendron chinense (Hemsl.) Sarg is an endangered species and occupies a pivotal position in phylogenetic studies of flowering plants, while its genomic resources are limited. In this study, we performed transcriptome sequencing for L. chinense petals and leaves using the Illumina paired-end sequencing technique. Approximately 17.02-Gb clean reads were obtained, and de novo assembly generated 87,841 unigenes, with an average length of 778bp. Of these, there were 65,535 (74.61%) unigenes with significant similarity to publically available plant protein sequences. There were 3386 genes identified as significant differentially expressed between petals and leaves, among them 2969 (87.68%) were up-regulated and 417 (12.31%) down-regulated in petals. Metabolic pathway analysis revealed that 25 unigenes were predicted to be responsible for the biosynthesis of carotenoids, with 7 genes differentially expressed between these two tissues. This report is the first to identify genes associated with carotenoid biosynthesis in Liriodendron and represents a valuable resource for future genomic studies on the endangered species L. chinense.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call