Abstract

Kodo millet (Paspalum scrobiculatum L.) is a small millet species known for its excellent nutritional and climate-resilient traits. To understand the genes and pathways underlying dehydration stress tolerance of kodo millet, the transcriptome of cultivar ‘CO3’ subjected to dehydration stress (0 h, 3 h, and 6 h) was sequenced. The study generated 239.1 million clean reads that identified 9201, 9814, and 2346 differentially expressed genes (DEGs) in 0 h vs. 3 h, 0 h vs. 6 h, and 3 h vs. 6 h libraries, respectively. The DEGs were found to be associated with vital molecular pathways, including hormone metabolism and signaling, antioxidant scavenging, photosynthesis, and cellular metabolism, and were validated using qRT-PCR. Also, a higher abundance of uncharacterized genes expressed during stress warrants further studies to characterize this class of genes to understand their role in dehydration stress response. Altogether, the study provides insights into the transcriptomic response of kodo millet during dehydration stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.