Abstract

Polyphenols play a crucial role in fruit flavor. To elucidate the mechanism of fruit polyphenol metabolism, we constructed a transcriptome atlas through PacBio single-molecule real-time (SMRT) sequencing and Illumina next-generation sequencing (NGS) using Canarium album (Lour.) Raeusch., which is a fantastic fruit rich in polyphenolic compounds. In this work, PacBio full-length transcriptome assembly generated 135,439 isoforms with an average length of all isoforms of 2687.94 bp and an N50 length of 3224 bp. To gain deeper insights into the molecular mechanisms of polyphenol biosynthesis in C. album, we constructed twelve RNA-Seq libraries from four developmental stages of the fruits. We identified a total of 28,658 differentially expressed genes (DEGs). We found that many DEGs were involved in metabolic pathways, biosynthesis of secondary metabolites, biosynthesis of antibiotics, starch and sucrose metabolism, and plant hormone signal transduction. Here, we report the expression profiles of 215 DEGs encoding 27 enzymes involved in the polyphenol biosynthesis pathway in C. album. In addition, 285 differentially expressed transcription factors (TFs) continuously down-regulated in four developmental periods of C. album fruit, which may indicate their potential role in the response to polyphenol metabolism and phenylpropanoid biosynthesis pathways. This report will help us understand polyphenol biosynthesis’s functions and metabolic mechanism in C. album. The transcriptome data provide a valuable resource for genetic and genomics research. They will facilitate future work exploiting C. album and other fruits used as medicine and food.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call