Abstract

Fly ash, collected in the electrostatic precipitator of a sinter plant in Belgium, has been examined and characterized in terms of its behavior with respect to thermal polychlorodibenzo-p-dioxins (PCDD) and polychlorodibenzofurans (PCDF) formation. Thermal experiments of the fly ash were conducted in a flow of air. The temperature was varied from 250 to 450 degrees C, and the reaction time varied from 30 min to 6 h. For comparison, the oxidative degradation of carbon in the fly ash was studied by differential scanning calorimetry (DSC) in the temperature range from 50 to 500 degrees C. Besides the known maximum of formation of PCDD/Fs around 325 degrees C generally found on experiments with incinerator fly ash, a second maximum of formation around 400 degrees C is observed on the sinter fly ash used in this study. DSC measurements on the fly ash show that the oxidative degradation of carbon appears at these two different temperatures confirming that the de novo synthesis on this kind of fly ash take place at two different optimum temperatures. About the reaction time, already after 30 min, an important quantity of PCDD/Fs is formed; the fast increase in PCDD/Fs amount is followed by a slower formation rate between 2 and 4 h. At longer reaction time, the formation slows down, and decomposition reactions become important. Analysis of homologue distribution indicates that the profile of PCDD/Fs is independent of the reaction time but that an increase of the temperature leads to a rise of lower chlorinated species. In all experiments, PCDF are formed preferentially (total PCDF/PCDD ratios larger than 5). The PCDF/PCDD ratio is clearly independent of the reaction time. Concerning the temperature, the apparently better stability of PCDF at high temperature (PCDF/PCDD ratio higher at high temperature) results in the fact of different PCDF/PCDD ratios for the different family and modifications of homologue distribution with the temperature. The isomer distribution shows little reaction time or temperature dependency, which is an argument in favor of a thermodynamic control of the isomer distribution during de novo formation of PCDD/Fs. Differences within the isomer distribution patterns of PCDD/Fs obtained from the laboratory de novo synthesis experiments and the original fly ash, reflecting the formation under the industrial process, suggest a different mechanism of formation in the sinter plant for the PCDD and PCDF. The de novo synthesis is sufficient to explain the PCDF formation in the real process, but synthesis from precursors must play a role for the PCDD formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call