Abstract

Chlorins bearing a six-membered imide ring spanning positions 13-15, commonly referred to as purpurinimides, exhibit long-wavelength absorption yet have heretofore only been available via semisynthesis from naturally occurring chlorophylls. A concise route to synthetic chlorins, which bear a geminal dimethyl group in the pyrroline ring, has been extended to provide access to chlorin-13,15-dicarboximides. The new route entails (i) synthesis of a 13-bromochlorin, (ii) palladium-catalyzed carbamoylation at the 13-position, (iii) regioselective 15-bromination under acidic conditions, and (iv) one-flask palladium-mediated carbonylation and ring closure to form the imide. In some cases the ring closure reaction afforded the isomeric (and readily separable) chlorin-isoimide in addition to the chlorin-imide. The resulting chlorin-imides and chlorin-isoimides exhibit long-wavelength absorption (679-715 nm) and emission (683-720 nm) in the far-red and near-infrared spectral region. The absorption of the chlorin-(iso)imides fills the spectral window between that of analogous synthetic chlorins and 13(1)-oxophorbines (603-687 nm) and bacteriochlorins (707-792 nm). The synthetic versatility of the de novo route complements the existing semisynthetic route from chlorophylls and should enable fundamental spectroscopic studies and photochemical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call