Abstract

In the presence of Mg2+ ions, polynucleotide phosphorylase (PNPase, EC 2.7.7.8) is known to synthesize RNA-like polymers using ribonucleoside-5'-diphosphate (NDP) substrates but to be unable to utilize deoxyribonucleoside substrates. Our experiments show that when MgCl2 is replaced by FeCl3, PNPase becomes able to synthesize deoxyheteropolymers using deoxyribonucleoside-5'-diphosphates (dNDPs). The deoxyheteropolymer formed from the four dNDPs is degraded by pancreatic DNase, but not by RNase, and is readily used as a template by DNA-dependent DNA polymerase. Synthesis of this DNA-like polymer is accomplished de novo without the help of any primer or preexisting template. What is more, dA/dG and dC/dT ratios of polymers synthesized by different bacterial PNPases closely match ratios found in DNA of the bacterial species the enzyme came from.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.