Abstract

Marburg virus (MARV) is an African filovirus that causes a deadly hemorrhagic fever in humans, with up to 90% mortality. Currently, there are no MARV vaccines or therapies approved for human use. We hypothesized that developing a vaccine that induces a de novo synthesis of MARV antigens in vivo will lead to strong induction of both a humoral and cell-mediated immune response against MARV. Here, we develop and characterize three novel gene-based vaccine candidates which express the viral glycoprotein (GP) from either the Ci67, Ravn or Musoke strain of MARV. Immunization of mice with complex adenovirus (Ad)-based vaccine candidates (cAdVax vaccines), led to efficient production of both antibodies and cytotoxic T lymphocytes (CTL) specific to Musoke strain GP and Ci67 strain GP, respectively. Antibody responses were also shown to be cross-reactive across the MARV strains, but not cross-reactive to Ebola virus, a related filovirus. Additionally, three 1 × 10 8 pfu doses of vaccine vector were demonstrated to be safe in mice, as this did not lead to any detectable toxicity in liver or spleen. These promising results indicate that a cAdVax-based vaccine could be effective for induction of both humoral and cell-mediated immune responses to multiple strains of the Marburg virus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.