Abstract

Entropy Sampling Monte Carlo (ESMC) simulations were carried out to study the thermodynamics of the folding transition in the GCN4 leucine zipper (GCN4-lz) in the context of a reduced model. Using the calculated partition functions for the monomer and dimer, and taking into account the equilibrium between the monomer and dimer, the average helix content of the GCN4-lz was computed over a range of temperatures and chain concentrations. The predicted helix contents for the native and denatured states of GCN4-lz agree with the experimental values. Similar to experimental results, our helix content versus temperature curves show a small linear decline in helix content with an increase in temperature in the native region. This is followed by a sharp transition to the denatured state. van’t Hoff analysis of the helix content versus temperature curves indicates that the folding transition can be described using a two-state model. This indicates that knowledge-based potentials can be used to describe the properties of the folded and unfolded states of proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.