Abstract

BackgroundLophophora williamsii (commonly named peyote) is a small, spineless cactus with psychoactive alkaloids, particularly mescaline. Peyote utilizes crassulacean acid metabolism (CAM), an alternative form of photosynthesis that exists in succulents such as cacti and other desert plants. Therefore, its transcriptome can be considered an important resource for future research focused on understanding how these plants make more efficient use of water in marginal environments and also for research focused on better understanding of the overall mechanisms leading to production of plant natural products and secondary metabolites.ResultsIn this study, two cDNA libraries were generated from L. williamsii. These libraries, representing buttons (tops of stems) and roots were sequenced using different sequencing platforms (GS-FLX, GS-Junior and PGM, respectively). A total of 5,541,550 raw reads were generated, which were assembled into 63,704 unigenes with an average length of 564.04 bp. A total of 25,149 unigenes (62.19 %) was annotated using public databases. 681 unigenes were found to be differentially expressed when comparing the two libraries, where 400 were preferentially expressed in buttons and 281 in roots. Some of the major alkaloids, including mescaline, were identified by GC-MS and relevant metabolic pathways were reconstructed using the Kyoto encyclopedia of genes and genomes database (KEGG). Subsequently, the expression patterns of preferentially expressed genes putatively involved in mescaline production were examined and validated by qRT-PCR.ConclusionsHigh throughput transcriptome sequencing (RNA-seq) analysis allowed us to efficiently identify candidate genes involved in mescaline biosynthetic pathway in L. williamsii; these included tyrosine/DOPA decarboxylase, hydroxylases, and O-methyltransferases. This study sets the theoretical foundation for bioassay design directed at confirming the participation of these genes in mescaline production.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1821-9) contains supplementary material, which is available to authorized users.

Highlights

  • Lophophora williamsii is a small, spineless cactus with psychoactive alkaloids, mescaline

  • Using gas chromatography–mass spectrometry analysis (GC–MS), we provide evidence that some alkaloids present in peyote are confined to specific organs; for example, mescaline was only detected in the peyote buttons but not in roots

  • The sequence obtained was 879 bp, corresponding to the typical size reported for group 1 of L. williamsii species, which contain mescaline [11] (Additional file 1)

Read more

Summary

Introduction

Lophophora williamsii (commonly named peyote) is a small, spineless cactus with psychoactive alkaloids, mescaline. Peyote belongs to the genus Lophophora, which includes two species, L. williamsii and L. diffusa [1]. This plant is capable of producing large amounts of alkaloids with psychotropic activity, such as β-phenylethylamine (class I) or tetrahydroisoquinoline (class II), which are derived from the amino acid tyrosine [2, 3]. Alkaloids are heterocyclic compounds that contain a nitrogen atom. The levels of alkaloids in plants vary from trace amounts to up to 10 % of dry weight, and a single plant species might contain over one hundred of different types. Some of the illnesses treated with peyote by Mexican Natives are tuberculosis, pneumonia, scarlet fever, intestinal ills, diabetes, rheumatic pains, colds, grippe, fevers, and venereal diseases, which is why peyote is officially listed in the Mexican pharmacopoeia [10]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.