Abstract

The fluoride-sensitive indica rice cultivar, IR-64 was subjected to NaF-treatment for 25 days, following which RNA-Seq analysis identified significant up and down regulation of 1,303 and 93 transcripts respectively. Gene ontology (GO) enrichment analysis classified transcripts into groups related to ‘cellular part’, ‘membrane’, ‘catalytic activity’, ‘transporter activity’, ‘binding’, ‘metabolic processes’ and ‘cellular processes’. Analysis of differentially expressed genes (DEGs) revealed fluoride-mediated suppression of abscisic acid (ABA) biosynthesis and signaling. Instead, the gibberellin-dependent pathway and signaling via ABA-independent transcription factors (TFs) was activated. Comparative profiling of selected DEGs in IR-64 and fluoride-tolerant variety, Khitish revealed significant cytoskeletal and nucleosomal remodelling, accompanied with escalated levels of autophagy in stressed IR-64 (unlike that in stressed Khitish). Genes associated with ion, solute and xenobiotic transport were strongly up regulated in stressed IR-64, indicating potential fluoride entry through these channels. On the contrary, genes associated with xenobiotic mobility were suppressed in the tolerant cultivar, which restricted bioaccumulation and translocation of fluoride. Pairwise expression profile analysis between stressed IR-64 and Khitish, supported by extensive statistical modelling predicted that fluoride susceptibility was associated with high expression of genes like amino acid transporter, ABC transporter2, CLCd, MFS monosaccharide transporter, SulfT2.1 and PotT2 while fluoride tolerance with high expression of Sweet11.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call