Abstract

Hydroxytyrosol is an olive-derived phenolic compound of increasing commercial interest due to its health-promoting properties. In this study, a high-yield hydroxytyrosol-producing Saccharomyces cerevisiae cell factory was established via a comprehensive metabolic engineering scheme. First, de novo biosynthetic pathway of hydroxytyrosol was constructed in yeast by gene screening and overexpression of different phenol hydroxylases, among which paHD (from Pseudomonas aeruginosa) displayed the best catalytic performance. Next, hydroxytyrosol precursor supply was enhanced via a multimodular engineering approach: elimination of tyrosine feedback inhibition through genomic integration of aro4K229L and aro7G141S, construction of an aromatic aldehyde synthase (AAS)-based tyrosine metabolic pathway, and redistribution of metabolic flux between glycolytic pathway and pentose phosphate pathway (PPP) by introducing the exogenous gene Bbxfpkopt. As a result, the titer of hydroxytyrosol was improved by 6.88-fold. Finally, a glucose-responsive dynamic regulation system based on GAL80 deletion was implemented, resulting in the final hydroxytyrosol yields of 308.65 mg/L and 167.98 mg/g cell mass, the highest known from de novo production in S. cerevisiae to date.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.