Abstract

BackgroundRett syndrome (RTT) is a neurodevelopmental disorder. In more than 95% of females with classic RTT a pathogenic mutation in MECP2 has been identified. This leaves a small fraction of classic cases with other genetic causes. So far, there has not been reported any other gene that may account for the majority of these cases.Case presentationWe describe two females who fulfill the diagnostic criteria for classic RTT, with pathogenic de novo mutations in SCN1A, which usually leads to Dravet syndrome. The developmental history and clinical features of these two females fits well with RTT, but they do have an unusual epileptic profile with early onset of seizures. Investigation of mRNA from one of the females showed a significantly reduced level of MECP2 mRNA.ConclusionsTo our knowledge, this is the first report suggesting that SCN1A mutations could account for a proportion of the females with classic RTT without MECP2 mutations. As a consequence of these findings SCN1A should be considered in the molecular routine screening in MECP2-negative individuals with RTT and early onset epilepsy.

Highlights

  • Rett syndrome (RTT) is a neurodevelopmental disorder

  • To our knowledge, this is the first report suggesting that SCN1A mutations could account for a proportion of the females with classic RTT without MECP2 mutations

  • As a consequence of these findings SCN1A should be considered in the molecular routine screening in MECP2-negative individuals with RTT and early onset epilepsy

Read more

Summary

Conclusions

This is the first report suggesting that SCN1A mutations could account for a proportion of the females with classic RTT without MECP2 mutations. As a consequence of these findings SCN1A should be considered in the molecular routine screening in MECP2-negative individuals with RTT and early onset epilepsy

Background
Findings
Discussion and conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.