Abstract

Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis, is able to efficiently manipulate the host immune system establishing chronic infection, yet the underlying mechanisms of immune evasion are not fully understood. Evidence suggests that this pathogen interferes with host cell lipid metabolism to ensure its persistence. Fatty acid metabolism is regulated by acetyl-CoA carboxylase (ACC) 1 and 2; both isoforms catalyze the conversion of acetyl-CoA into malonyl-CoA, but have distinct roles. ACC1 is located in the cytosol, where it regulates de novo fatty acid synthesis (FAS), while ACC2 is associated with the outer mitochondrial membrane, regulating fatty acid oxidation (FAO). In macrophages, mycobacteria induce metabolic changes that lead to the cytosolic accumulation of lipids. This reprogramming impairs macrophage activation and contributes to chronic infection. In dendritic cells (DCs), FAS has been suggested to underlie optimal cytokine production and antigen presentation, but little is known about the metabolic changes occurring in DCs upon mycobacterial infection and how they affect the outcome of the immune response. We therefore determined the role of fatty acid metabolism in myeloid cells and T cells during Mycobacterium bovis BCG or Mtb infection, using novel genetic mouse models that allow cell-specific deletion of ACC1 and ACC2 in DCs, macrophages, or T cells. Our results demonstrate that de novo FAS is induced in DCs and macrophages upon M. bovis BCG infection. However, ACC1 expression in DCs and macrophages is not required to control mycobacteria. Similarly, absence of ACC2 did not influence the ability of DCs and macrophages to cope with infection. Furthermore, deletion of ACC1 in DCs or macrophages had no effect on systemic pro-inflammatory cytokine production or T cell priming, suggesting that FAS is dispensable for an intact innate response against mycobacteria. In contrast, mice with a deletion of ACC1 specifically in T cells fail to generate efficient T helper 1 responses and succumb early to Mtb infection. In summary, our results reveal ACC1-dependent FAS as a crucial mechanism in T cells, but not DCs or macrophages, to fight against mycobacterial infection.

Highlights

  • Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (Tb), remains a major health problem worldwide, a situation that becomes aggravated by increasing cases of multidrugresistant strains

  • Our results suggest that while ACC1 and ACC2 expression in dendritic cells (DCs) and macrophages is dispensable for mycobacterial control, T cells greatly depend on ACC1 and de novo fatty acid synthesis (FAS) to cope with infection

  • Studies investigating the role of DCs and macrophages during mycobacterial infection are mainly based on in vitro-generated macrophages and granulocyte-macrophage colony-stimulating factor (GM-CSF) DCs derived from murine bone marrow

Read more

Summary

Introduction

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (Tb), remains a major health problem worldwide, a situation that becomes aggravated by increasing cases of multidrugresistant strains. A better understanding of the basic mechanisms employed by the pathogen to persist within the host is of major importance to design therapeutic strategies aiming at completely eliminating the bacteria. AMs serve as a niche for initial bacterial replication, until these cells die by apoptosis or necrosis and mycobacteria spread to the extracellular space where they can be detected by other mononuclear cells. This initiates an inflammatory response that leads to the formation of the granuloma and containment of bacterial growth. Mtb has acquired the capacity to persist in macrophages for long periods of time, exploiting the host cell machinery for its own purposes

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.