Abstract
Covalent organic frameworks (COFs) have aroused extensive attention from various fields owing to their numerous advantages, including permanent porosity, high crystallinity, strong robustness, and well-ordered channels. However, the poor processability of the crystallite powder has greatly impeded their further utilization in many advanced devices and frontier areas. In this work, we fabricate a series of COF films using an interfacial polymerization strategy at a liquid-liquid interface under ambient conditions. The as-synthesized freestanding films are continuous, flexible, and defect-free and have large areas of up to 4 × 6 cm2. In addition, the pore sizes of these COF films can be well controlled based on the principle of reticular chemistry. These films exhibit high chemical stability even in acidic and basic aqueous solutions. More significantly, the highly robust COF films can serve as a nanofiltration membrane for efficient separation of pollutant molecules with different dimensions. These films show high selectivity for the separation of mixed molecule feed and excellent recyclability without a significant loss in the rejection rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.