Abstract

A number of alpha-melanotropin (alpha-MSH) analogues have been designed de novo, synthesized, and bioassayed at different melanocortin receptors from frog skin (fMC1R) and mouse/rat (mMC1R, rMC3R, mMC4R, and mMC5R). These ligands were designed from somatostatin by a hybrid approach, which utilizes a modified cyclic structure (H-d-Phe-c[Cys---Cys]-Thr-NH(2)) related to somatostatin analogues (e.g. sandostatin) acting at somatostatin receptors, CTAP which binds specifically to micro opioid receptors, and the core pharmacophore of alpha-MSH (His-Phe-Arg-Trp). Ligands designed were H-d-Phe-c[XXX-YYY-ZZZ-Arg-Trp-AAA]-Thr-NH(2) [XXX and AAA = Cys, d-Cys, Hcy, Pen, d-Pen; YYY = His, His(1'-Me), His(3'-Me); ZZZ = Phe and side chain halogen substituted Phe, d-Phe, d-Nal(1'), and d-Nal(2')]. The compounds showed a wide range of bioactivities at the frog skin MC1R; e.g. H-d-Phe-c[Hcy-His-d-Phe-Arg-Trp-Cys]-Thr-NH(2) (6, EC(50) = 0.30 nM) and H-d-Phe-c[Cys-His-d-Phe-Arg-Trp-d-Cys]-Thr-NH(2) (8, EC(50) = 0.10 nM). In addition, when a lactam bridge was used as in H-d-Phe-c[Asp-His-d-Phe-Arg-Trp-Lys]-Thr-NH(2) (7, EC(50) = 0.10 nM), the analogue obtained is as potent as alpha-MSH in the frog skin MC1R assay. Interestingly, switching the bridge of 6 to give H-d-Phe-c[Cys-His-d-Phe-Arg-Trp-Hcy]-Thr-NH(2) (5, EC(50) = 1000 nM) led to a 3000-fold decrease in agonist activity. An increase in steric size in the side chain of d-Phe(7) reduced the bioactivity significantly. For example, H-d-Phe-c[Cys-His-d-Nal(1')-Arg-Trp-d-Cys]-Thr-NH(2) (24) is 2000-fold less active than 9. On the other hand, H-d-Phe-c[Cys-His-d-Phe(p-I)-Arg-Trp-d-Cys]-Thr-NH(2) (23) lost all agonist activity and became a weak antagonist (IC(50) = 1 x 10(-5) M). Furthermore, the modified CTAP analogues with a d-Trp at position 7 all showed weak antagonist activities (EC(50) = 10(-6) to 10(-7) M). Compounds bioassayed at mouse/rat MCRs displayed intriguing results. Most of them are potent at all four receptors tested (mMC1R, rMC3R, mMC4R, and mMC5R) with poor selectivities. However, two of the ligands, H-d-Phe-c[Cys-His-d-Phe-Arg-Trp-Pen]-Thr-NH(2) (9, EC(50) = 6.9 x 10(-9) M, 6.4 x 10(-8) M, 2.0 x 10(-8) M, and 1.4 x 10(-10) M at mMC1R, rMC3R, mMC4R, and mMC5R, respectively) and H-d-Phe-c[Cys-His(3'-Me)-d-Phe-Arg-Trp-Cys]-Thr-NH(2) (16, EC(50) = 3.5 x 10(-8) M, 3.1 x 10(-8) M, 8.8 x 10(-9) M, and 5.5 x 10(-10) M at mMC1R, rMC3R, mMC4R, and mMC5R, respectively) showed significant selectivities for the mMC5R. Worthy of mention is that neither of these two ligands is potent in the frog skin MC1R assay (EC(50) = 10(-7) M for 9 and EC(50) = 10(-5) M for 16). These results clearly demonstrated that binding behaviors in rodent MCRs are quite different from those in the classical frog skin (R pipiens) assay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.