Abstract

SARS-CoV-2 and its variants are crossing the immunity barrier induced through vaccination. Recent Omicron sub-variants are highly transmissible and have a low mortality rate. Despite the low severity of Omicron variants, these new variants are known to cause acute post-infectious syndromes. Nowadays, novel strategies to develop new potential inhibitors for SARS-CoV-2 and other Omicron variants have gained prominence. For viral replication and survival the main protease of SARS-CoV-2 plays a vital role. Peptide-like inhibitors that mimic the substrate peptide have already proved to be effective in inhibiting the Mpro of SARS-CoV-2 variants. Our systematic canonical amino acid point mutation analysis on the native peptide has revealed various ways to improve the native peptide of the main protease. Multi mutation analysis has led us to identify and design potent peptide-analog inhibitors that act against the Mpro of the Omicron sub-variants. Our in-depth analysis of all-atom molecular dynamics studies has paved the way to characterize the atomistic behavior of Mpro in Omicron variants. Our goal is to develop potent peptide-analogs that could be therapeutically effective against Omicron and its sub-variants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call