Abstract

Transient receptor potential vanilloid 1 (TRPV1) ion channel is a nociceptor critically involved in pain sensation. Direct blockade of TRPV1 exhibits significant analgesic effects but also incurs severe side effects such as hyperthermia, causing failures of TRPV1 inhibitors in clinical trials. In order to selectively target TRPV1 channels that are actively involved in pain‐sensing, peptidic positive allosteric modulators (PAMs) based on the high‐resolution structure of the TRPV1 intracellular ankyrin‐repeat like domain are de novo designed. The hotspot centric approach is optimized for protein design; its usage in Rosetta increases the success rate in protein binder design. It is demonstrated experimentally, with a combination of fluorescence resonance energy transfer (FRET) imaging, surface plasmon resonance, and patch‐clamp recording, that the designed PAMs bind to TRPV1 with nanomolar affinity and allosterically enhance its response to ligand activation as it is designed. It is further demonstrated that the designed PAM exhibits long‐lasting in vivo analgesic effects in rats without changing their body temperature, suggesting that they have potentials for developing into novel analgesics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.