Abstract

The modulating effect of chemical compounds and therapeutics on gene transcription is well-reported and has been intensively studied for both clinical and research purposes. Emerging research points toward the utility of drug-induced transcriptional alterations in de novo molecular design and highlights the idea of phenotype-matching an expression signature of interest to the structures being designed. In this work, we build an autoencoder-based generative model, BiCEV, around this concept. Our generative autoencoder has demonstrably generated a set of new molecules from gene expression input with notable validity (96%), uniqueness (98%), and internal diversity (0.77). Further, we attempted to validate BiCEV by testing the model on gene-knockdown profiles and combined signatures of synergistic drug pairs. From these investigations, we found the designed structures to be consistently high in collective quality. However, when their similarities to the supposed functional equivalents as determined by shared targets were considered, the findings were somewhat mixed. In spite of this, we believe the generative model merits further development in conjunction with in vitro corroboration to lend itself to being an assistive tool for drug discovery experts, particularly to support the initial stages of hit identification and lead optimization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.