Abstract
Abstract For the design of functional molecules and nanodevices, it is very useful to utilize nanorecognition (which is governed mainly by interaction forces such as hydrogen bonding, ionic interaction, π-H/π-π interactions, and metallic interactions) and nanodynamics (involving capture, transport, and release of electrons, photons, or protons). The manifestation of these interaction forces has led us to the design and realization of diverse ionophores/receptors, organic nanotubes, nanowires, molecular mechanical devices, molecular switches, enzyme mimetics, protein folding/unfolding, etc. In this review, we begin with a brief discussion of the interaction forces, followed by some of our representative applications. We discuss ionophores with chemo-sensing capability for biologically important cations and anions and explain how the understanding of hydrogen bonding and π-interactions has led to the design of self-assembled nanotubes from calix[4]hydroquinone (CHQ). The binding study of neutral and cationic transition metals with the redox system of hydroquinone (HQ) and quinone (Q) predicts what kind of nanostructures would form. Finally, we look into the conformational changes between stacked and edge-to-face conformers in π-benzoquinone-benzene complexes controlled by alternating electrochemical potential. The resulting flapping motion illustrates a promising pathway toward the design of mobile nanomechanical devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.