Abstract

Despite their widely used and access as biological reagents in analytical methods, the detailed structural features for most of the antibodies were rarely known. Here, a new antibody for AFB1 with high specificity in constructing ELISA was studied in detail. The molecular structure and modification were elucidated mainly by nano-electrospray ionization mass spectrometry. The mass experiments, including MALDI-TOF MS, revealed complete and specific fragments, including antibody molecular weight, peptides, glycopeptide, and N-glycoform. By proteolytic treatment of pepsin and trypsin and high-resolution tandem-MS, the primary structure of the newly developed anti-AFB1 antibody was assembled by several rounds of Database search process assisted with the de novo results. The antibody CDR annotation and constraint-based multiple alignment tool were used to differentiate and align the sequences. The method uses only two proteases to generate numerous peptides for de novo sequencing. This artificial assembled AFB1-specific monoclonal antibody sequence was validated by comparison with the sequencing results of the immunoglobulin gene. The results showed that this method achieves full sequence coverage of anti-AFB1 monoclonal antibody, with an accuracy of 100% in the CDR regions of light chain and four amino acid mismatch in heavy chain. This simple and low-cost method was confirmed by treating a public dataset. The secondary structure information of intact antibody was also elucidated from the results of circular dichroism spectrum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.