Abstract

Primordium formation is extremely important for yield of Pleurotus tuoliensis. However, the molecular mechanism underlying primordium formation is largely unknown. This study investigated the transcriptional properties during primordium formation of P. tuoliensis by comparing transcriptome. Clean reads were assembled into 57,075 transcripts and 6874 unigenes. A total of 1397 differentially expressed genes were identified (26 DEGs altered in all stages). GO and KEGG enrichment analysis showed that these DEGs were involved in “oxidoreductase activity”, “glycolysis/gluconeogenesis”, “MAPK signaling pathways”, and “ribosomes”. Our results support further understanding of the transcriptional changes and molecular processes underlying primordium formation and differentiation of P. tuoliensis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.